
1st International Conference on Education and Development ITED 2018

64

A Framework for Quality Evaluation of Tools in

Software Product Lines

Muhammad Garba

Department of Computer Science

Kebbi State University of Science and

Technology, Aliero, Nigeria

garbamga@gmail.com

Muhammad Sirajo Aliyu

Department of Computer Science

College of Science and Technology,

Hassan Usman Katsina Polytechnic

Katsina State, Nigeria,

muhammadsirajo@yahoo.com

Abstract -- Software quality has become a key aspect of good

software engineering practice. The term quality is a complex

concept. Since it means different things to different individuals, it

is highly context-dependent. Just as there is no single mobile

phone to satisfy everyone’s needs, likewise there is no universal

definition of quality. Accordingly, there can be no one, simple

measure of software quality acceptable to everyone. This paper

presents a benchmark for evaluating quality attributes

important for practical use of software product line (SPL)

tools. The benchmark focused on measuring the four

quality attributes: Usability, Performance, Scalability, and

Integration. The results are to assist practitioners and

researchers alike by providing a standard and empirical

approach to evaluating product line tools in the future. It

also identifies and recommends areas that need attention

in future tools design in this kind of modelling.

Keywords-Benchmark, Software Quality, Evaluation, Feature

Modelling, Software Product Line Variability Models

I. Introduction

The Software Product Line Engineering (SPLE)

technique provides a systematic way to reuse software

assets. These assets are the software artefacts or resources

associated with your products. The artefacts include, but

are not limited to requirements analysis, design

specifications, software implementation, configuration,

test plans, test cases, etc. The assets are then engineered to

be shared across the entire product line, i.e., to be used in

multiple products. Therefore, SPLE is a technique that

optimizes the reuse of existing software assets by creating

multiple applications that share many features, while still

exhibiting certain differences [1, 2].

The main purpose of software reuse is to improve

software quality and productivity. Software reuse is of

interest because people want to build systems that are

bigger and more complex, more reliable, less expensive

and that are delivered on time. They have found traditional

software engineering methods inadequate, and feel that

software reuse can provide a better way of doing software

engineering [3]. However, Well-designed metrics with

documented objectives can help organizations obtain the

information it needs to continue to improve its software

product, processes, and customer services. Therefore,

future research is need to extend and improve the

methodology to extend metrics that have been validated on

one project, using our criteria, valid measures of quality on

software product line projects.

This paper is a summary of an extended paper which

presents a benchmark for evaluation of quality attributes

important for practical use in software product lines. The

purpose is to provide the researchers and the practitioners

with a better insight into the validation activity, improving

the software process towards the goal of the having a

management process. The study identified and selected 10

product line variability management tools based on their

availability and support for feature models, to be evaluated

using the benchmark in order to identify whether and to

what extent these tools provide support for the identified

quality attributes. The quality attributes studied in the

evaluation are: usability, performance, scalability and

integration, which are seen as being important for the

practical use of these tools.

The remaining paper is organised as follows: In section

2, the research methodology used is discussed. Section 3

provides the detailed description of the Benchmark.

Finally, Section 4 presents the related works before section

5 rounds off the paper with the conclusion.

II. Related works

Many works have been reported by various authors

within the SPL community in order to analyse, compare, or

evaluate some of the existing variability management

methods, tools, and techniques. However, to the best of our

knowledge, no one has specifically evaluated these quality

characteristics important for practical use of tools that

support variability in SPLs.

For example, in [15], a quality evaluation of nine feature

modelling tools was conducted with the specific focus on

quality criteria of usability, safety, and functional usability

features. The main aim of the investigation was how to

improve the quality in feature modelling tools, in general.

Study [16] evaluated four product line tools against certain

criteria defined based on three perspectives; 1) criteria

relating to product line engineering (2) criteria relating to

mailto:muhammadsirajo@yahoo.com

1st International Conference on Education and Development ITED 2018

65

tools capabilities and (3) criteria concerning project

management. This is to determine their ability to satisfy

industry expectations. In study [17], eight tools and

techniques for variability modelling in software product

line (SPL) or business process management (BPM) were

evaluated based on various formalisms used in specifying

software process variability. The study analysed the tools

in order to investigate their suitability for modelling

variability in the software process. However, in order to

assist engineers in selection of a suitable tool that best fits

their needs, the authors in [18] conducted an exploratory

study that compares and analyses two feature modelling

tools, based on data collected from 56 participants who

experimentally used the tools. The study focused on

evaluating the four common functionalities provided by

feature modelling tools. These are: feature model editor,

automated analysis of feature model, product configuration

and tool notation.

III. Methodology

In order to carry out this study, we applied a research

methodology that combined both the features of qualitative

and quantitative research methodologies. In the first step, a

benchmark was developed, to be used consistently as a

guideline in the evaluation process. As a crucial stage in

the benchmarking design, we explored product line

industries in order to know precisely what matters for the

practitioners. We, therefore, used the outcome of an

interview-based survey that involved a number of software

product line practitioners, in which they were asked to list

five quality attributes they deemed important for practical

use of SPLs Variability Management (VM) tools. The

identified quality attributes (usability, scalability,

performance, and integration) were then used as key

criteria to assess (i.e., how well the tools addressed them)

the capability of SPLs-VM tools in the evaluation phase.

Details of these quality attributes are given in section 4.1.

In the second step, the study focused on measuring the

identified quality attributes, so as to ascertain their

meanings and position. Hence, a further exploration into a

number of internationally recognised standards and some

respected reference models were carried out; these

included ISO/IEC 9126 [4, 5] (International Standard for

Evaluation of Software Quality) and IEEE Standard 610.12

(IEEE Standard Glossary of Software Engineering

Terminology). Among the other is the well-known

Software Quality Metrics book [6], as well as An Effort-

Based Framework for Evaluating Software Usability [7].

Having completed the survey and investigations on the

identified quality attributes, in the third step, the results of

a study has been used, this study reported on a survey in

which 37 existing product line-variability management

tools were identified and analyzed using a systematic

literature review [8], from which 8 tools were selected (cf.

extended paper), based on their availability and support for

the graphical notations. However, 2 more publicly

available tools were added using a separate search, making

a total of 10 tools used in the evaluation process. The

details of the identified tools and the criteria used when

selecting a tool are given in the extended paper of this

work.

Finally, in the fourth step, an experimental evaluation

was conducted, using 4 sample case studies (cf. extended

paper) of different sizes, and this was achieved by steadily

applying the benchmark. The purpose was to assess how

well the identified tools addressed the four quality

attributes. This was followed by an opinion-based

evaluation method that uses a questionnaire to obtain more

insight into the user’s opinion of their experience using the

system. This was to know the extent to which the system is

attractive.

IV. Benchmark

This section presents the four quality attributes

measured, sub-characteristics of each quality attribute and

their detailed definitions. The section also gives in detail,

how the measurement was carried out.

A. Quality Attributes

The four quality attributes this study measured are:

usability, scalability, performance, and integration. As

stated in section 2, these attributes were gathered from a

study that used an interview based survey involving a

number of software product line practitioners, in which

they were asked to list five most important quality

attributes for practical use of SPL tools. Figure 1. depicts

the four quality attributes with their sub-characteristics.

Fig. 1. The quality attributes used

Quality Attributes

Usability

Understandability Complexity

Learnability Time Required

Operability Effort Required

Attractiveness
Enjoyable and

pleasing

Scalability

number of nodes
supported

Dependencies

Performance

Task Completion
Time

Search Capability

Integration
Integration with

other Tools

1st International Conference on Education and Development ITED 2018

66

B Usability Measure:

In order to determine and understand the main aspects

that influence usability, this study based the measurement

on the ISO 9126 [4, 5] on software quality and

measurement, which defined usability as ‘the capability of

the software to be understood, learned, used and liked by

the user, when used under specified conditions’. The

standard identifies four to five key components of usability

of a software product. Below are the detailed breakdown

and the definitions of these sub-quality characteristics of

usability:

C Understandability

Can the software be understood easily? That is, the

ability of the software product to enable the user to

understand whether the software is suitable, and how it can

be used for particular tasks and given the conditions of use.

Understandability helps determine how easily the user can

comprehend and use the software. We based the

measurement of Understandability on study [9] where an

ordinal scale was used as our measurement scale type (see

Table 1) to measure the complexity of using the

software. The ordinal scale provides a list of ordered

alternatives from which respondents can select an option.

TABLE 1 ORDINAL SCALE TYPE

Value Meaning

1 Trivial: commonly encountered (no

exceptional effort needed)

2 Simple: Easy to manage and uncomplicated

3 Moderate: Being within average limit

4 Complex: Not easy to manage of being

intricate

5 Incomprehensible: Impossible to manage of

being not clear

D Learnability

Can the software be learnt easily? That is, the ability of

the software product to enable the user to learn its

application. Learnability is measured as the time that is

required to fulfil a specified task. The specified task for this

study is the need to add, delete, and edit a feature. This is

in addition to the modelling of its dependency.

Learnability = Total Time required to Add,

Delete or Edit a feature + Dependency

Management

E Operability

Can the software be operated with minimal effort? That

is, the capacity of the software product to allow the user to

operate and control it. Operability was measured based on

the efforts needed to accomplish the specified tasks (in this

case) of adding, deleting, and editing a feature, together

with the modelling dependency. Consequently, this effort

equals the number of mouse clicks or screen touch (mc/st)

+ number of keyboard hits (kh). This measurement method

is based on [7].

Operability = Efforts needed to Add, Delete or

Edit a feature + Dependency Management

Efforts = Number of mouse click or equivalent +

Number of Keyboard strikes

F Attractiveness

Is the interface of the software engaging? That is, the

capability of the software product to be liked by the user.

To measure attractiveness, this study based on [9] where a

5-point Likert scale is used to rank the software

attractiveness, given a user a statement with which the user

agrees or disagrees. The statement used for this study is:

The software is attractive (i.e. Enjoyable and pleasing).

1- Strongly Agree 2- Agree 3- Neither agree nor disagree

4- Disagree 5- Strongly Disagree

G Compliance

Does the software meet existing usability standards?

From the above definitions, usability can be measured by

the degree to which a software product can satisfy the

individual aspects of the definitions, i.e. to learn,

understand, operate, and be attractive, while at the same

time the software is compliant with and meets the existing

usability standards. This is to be achieved under specified

conditions in which a user or group of users carry out

certain practical tasks.

H Basics of sub-quality attributes under usability

i. Understandability: Complexity in using the

software

ii. Learnability: Time required to fulfil a specified

task

iii. Operability: Effort required to carry out a basic

task

iv. Attractiveness: Is the software attractive to the

target audience?

I Scalability Measure:

Scalability, as it has been defined by [10], is the ability

of the modelling approach to continue to meet its

throughput objectives despite increasing or decreasing the

amount of assets and elements that make up the models. A

scalable variability modelling approach is the one that is

1st International Conference on Education and Development ITED 2018

67

useful when applied to a product line of any size (i.e. it

should be capable of managing large or small size

variability without any overhead or extra effort).

Therefore, an approach will not be regarded as scalable if

scaling only in one direction (i.e. downwards or upwards).

However, a survey study on scalability aspects in [11]

pointed out that, dependency relationships (such as variants

to variants, variants to variation points or variation points

to variation points) within variability models are the most

discussed aspects in tackling scalability by modelling

approaches. Hence, based on these studies, we used

sample case studies of various sizes to serve as our basis

for the experimental process of measuring scalability.

These cases were then classified into three different

categories, which were then used to validate the selected

tools with respect to this quality aspect. The sample models

are: (1) Small size, when a tool supports the development

and management of 10-50 features before it starts to freeze

or slow down. (2) Medium size, when the ability of

variability management tool is to offer support for the

development and management of 10-100 features when

used, and (3) Large size, when it supports the development

and management of variability models between 100-1000.

At each level of testing of these various sample models,

there was a practical investigation to see if the tools provide

good support for dependency management and how it

works. The scalability measure has been achieved

experimentally, in order to gain a clear understanding of

how and to what level the selected tools offer quality

support for this attribute during the modelling process.

Please note that it is not our purpose to measure the

visualization techniques deployed by these tools, but rather

focus on the number of nodes they support.

V Performance Measure:

Performance evaluation according to [12] and [13]

includes externally observable system performance

characteristics, such as response times and completion

rates. However, IEEE standard 610.12 defined

performance as the degree at which a system or a

component completes designated tasks within given limits,

such as speed, accuracy, or memory usage [14]. In this

study, Performance is measured in relation to the

scalability as the time it takes for each tool to validate the

sample feature models assigned to it. That is, performance

is measured as task completion time plus the search

capability provided by the tools. Due to a large growth in

size of the model, it becomes mandatory to investigate

whether a tool can allow its user to search for a particular

element of interest given several features.

Integration Measure:

The ability of a software tool to provide the means to

either fully or partially integrate with other tools so that

both tools can operate on the same set of data.

In this context, we will be using characteristics as

follows:

Y = Yes, when a tool provides means to be fully integrated

with other tools, and therefore operate on same set of data.

P = Partial, when a tool provides only half the features

required for integration.

N = No, when a tool provides no means of integration.

VI Conclusion

This paper presents a description of a benchmark for

evaluating quality attributes important for practical use of

software product lines (SPLs). The focus was on measuring

four quality attributes: Usability, Performance, Scalability,

and Integration. It however, reported briefly on how

empirical experimentation can be conducted if involves a

number of variability management tools based on their

availability and support for feature modelling. The paper

also describes the importance of determining and gaining a

detail understanding of where and how the quality of

variability management tools could be improved during

evaluation process, and this is to get a clear understanding

on whether and to what extent these tools provide support

for the identified quality attributes. The paper also

highlighted the importance of using multiple case studies

of various sizes and data elements while conducting

evaluation of this kind. In addition, one of these cases

should be a real live data, either acquired from industry or

any related software organization. Meanwhile, the

remaining case studies could be gathered from some results

of a careful examination of a large body of research in the

area of software product lines, from which feature models

of various sizes could be formulated and used in the

experimental process.

Reference

[1] P. Clements and L. Northrop, Software Product

Lines: Practices and Patterns. Massachusetts:

Addison-Wesley, 2002.

[2] K. C. Kang, J. Lee, and P. Donohoe, "Feature-

Oriented Product Line Engineering," IEEE

Software, vol. 19, pp. 58-65, 2002.

[3] L. Chen and M. Ali Babar, "A systematic review

of evaluation of variability management

approaches in software product lines,"

Information and Software Technology, vol. 53,

pp. 344–362, 2011.

1st International Conference on Education and Development ITED 2018

68

[4] ISO/IEC, "ISO/IEC 9126-1: Software

Engineering-Product Quality-Part 1: Quality

Model," ed. Geneva Switzerland: International

Standards Organization, 2001.

[5] ISO/IEC, "ISO/IEC 9126-1: Software

Engineering-Product Quality, Part-2, External

Metrics," ed. Geneva, Switzerland: International

Organization for Standardization, 2003.

[6] N. Fenton and J. Bieman, Software Metrics: A

Rigorous and Practical Approach, 3 ed.: CRC

Press, 2014.

[7] D. Tamir, C. Mueller, and O. Komogortsev, "An

Effort-Based Framework for Evaluating Software

Usability Design," ARPN Journal of Systems and

Software, vol. 3, pp. 65-77, 2013.

[8] R. Bashroush, M. Garba, R. Rabiser, I. Groher,

and G. Botterweck, "CASE tool support for

variability management in software product

lines," ACM Computing Survey, vol. 50, p. 45,

March 2017 2017.

[9] N. E. Fenton and S. L. Pfleeger, Software Metrics:

A Rigorous and Practical Approach, 2 ed. Boston,

USA: PWS Publishing Company, 1998.

[10] K. Berg, J. Bishop, and D. Muthig, "Tracing

software product line variability: from problem to

solution space," in Proceedings of the 2005

annual research conference of the South African

institute of computer scientists and information

technologists on IT research in developing

countries, South Africa, 2005, pp. 182 - 191.

[11] L. Chen and M. A. Babar, "A Survey of

Scalability Aspects of Variability Modeling

Approaches," in Workshop on Scalable Modeling

Techniques for Software Product Lines at SPLC,

2009.

[12] D. Ferrari, Measurement and Tuning of Computer

Systems. New York: Prentice Hall, 1983.

[13] L. Kleinrock, Queueing Systems, Volume I:

Theory, and Volume 2: Computer Applications.

New York: Wiley, 1976.

[14] IEEE, "IEEE Standard Glossary of Software

Engineering Terminology," in IEEE Std 610.12-

1990, ed, 1990, pp. 1-84.

[15] M. El Dammagh and O. De Troyer, "Feature

Modeling Tools: Evaluation and Lessons

Learned," in Proceedings of the 30th

International Conference on Advances in

Conceptual Modeling: Recent Developments and

New Directions (ER'11), Variability Workshop on

Software Variability Management

(Variability@ER11), 2011, pp. 120-129.

[16] O. Djebbi, C. Salinesi, and G. Fanmuy, "Industry

Survey of Product Lines Management Tools:

Requirements, Qualities and Open Issues," in

Proceedings of the 15th IEEE International

Requirements Engineering Conference (RE '07),

New Delhi, India, 2007, pp. 301-306.

[17] J. Simmonds, M. C. Bastarrica, L. Silvestre, and

A. Quispe, "Analyzing Methodologies and Tools

for Specifying Variability in Software Processes,"

Universidad de Chile, Santiago, Chile. 2011.

[18] J. A. Pereira, C. Souza, E. Figueiredo, R. Abilio,

G. Vale, Heitor, et al., "Software Variability

Management- An

 Exploratory Study with Two Feature Modeling

Tools," in VII Brazilian Symposium on Software

Components,

 Architecture and Reuse, 2013.

