
1st International Conference on Education and Development ITED 2018

108

One-Parameter-At-A-Time Combinatorial Testing

Strategy Based on Harmony Search Algorithm

Supporting Mixed Covering Array Mathematical

Notation (OPATHS)

Aminu Aminu Muazu1
Department of Mathematics & Computer Science.

Umaru Musa Yar’adua University

Katsina, Nigeria.

aminu.aminu@umyu.edu.ng

Abubakar Aminu Muazu2

Department of Mathematics & Computer Science.

Umaru Musa Yar’adua University

Katsina, Nigeria.

abubakar.muazu@umyu.edu.ng

Abstract⸺ Software testing is a step by step process of

employing a product in order to make sure it entertains

user’s specification requirements. Testing is compulsory,

to reassure that software works perfectively and to confirm

that a software was successfully tested, the software should

be tested exhaustively just to make sure that the software

cannot be demolished by some random accidents, but the

exhaustive testing is unattainable. There are many existing

strategies that minimized the test suite size in a software

system, but most of these strategies based on optimization

algorithm are using one-test-at-a-time approach and none

of them have been adopt one-parameter-at-a-time

approach that is based on harmony search algorithm.

Therefore, this paper will describe a new strategy called

OPATHS. OPATHS is the first strategy based on Harmony

Search Algorithm that adopt one-parameter-at-a-time

approach. OPATHS was designed only to support Mixed

Covering Array notations with a uniform interaction

strength and from the result obtained in the experiments

gives a comparable result and always appears to be best.

Index Terms⸺ Software testing, combinatorial testing,

d-way techniques, one parameter at a time approach,

Harmony Search Algorithm, Uniform Interaction

strength.

I. INTRODUCTION

In the modern world, software is use in every detail of

social life and is becoming the key engine of economic and

as well social progress that affects social and economic

development. Nowadays, almost our live rely more on the

execution of software (accurately), whether the software is

a mobile phone application, TV application, computer

application, etc. Also in the business, we carry out each day

with credit/debit card acquisitions, money transfer, use of

internet, e-mail, chatting, and so on.

The entire aspiration of a software company is to ensure

that a software is delivered with a high quality to it

customers. Therefore, to achieve a high-quality software,

the software need to be tested [2]. The software testing

makes sure that software achieves the user requirements,

such that to avoid failures visible to customers [2]. In

software development lifecycle, software testing is giving

a higher priority and lack of testing may lead to harmful

ends which includes the loss of an important data, or even

the lives of people [18].

The major aim of software testing is to minimize the

recognized risk of software which is worthless to an

admissible value [4]. As such, the software engineers will

come up with a large number of test data [4]. If every

possible test has been run, the bugs or defects will be

detected that is called exhaustive testing, that is to testing

all possible combinations of inputs data and execution

paths, but this is impossible in real world software, based

on the general principles of software testing, it would need

undetermined time, and enormous resources [10].

Combinatorial testing is a type testing whereby for each d-

way (where d indicates the combination strength)

combination of possible values of parameters of a given

system, that every combination of values of these d

parameters can be covered by at least one test case [15]

[14].

All Combinatorial testing approaches are categorized into:

“one-test-at-a-time” approach (OTATA) and “one-

parameter-at-a-time” approach (OPATA). As for OPATA,

the main example is IPOG [12].

There are many existing strategies like GA [7], SA [8],

HSS [3] that minimized the test suite size in a system, but

the majority of these strategies based on optimization

algorithm and are using OTATA but none of them has been

mailto:aminu.aminu@umyu.edu.ng
mailto:abubakar.muazu@umyu.edu.ng

1st International Conference on Education and Development ITED 2018

109

based on optimization algorithm and using OPATA. Even

though, IPOG and its family are one of the existing strategy

that adopt one-parameter-at-a-time approach, but it is not

based optimization algorithm [12].

D-way strategy is referring to an interaction testing, which

reduces test data from a software system based on a given

interaction strength (d) [5].

Therefore, this paper will propose and implement a d-way

combinatorial testing strategy which based on harmony

search algorithm by adopting OPATA.

II. RELATED WORK

Similar to any other engineering process, software

development is subjected to cost. Nowadays, software

testing consumes most of the time and cost spent on

software development. This cost decrease rapidly as testing

time decreases. Most of the time, a software may be

released without being tested sufficiently because of

marketing pressure as well as the intention to save time and

cut costs. As such, many researchers have developed

various strategies to solve this problem with the intention

to generate near optimal test suite [4].

Majority of the existing strategies on d-way

combinatorial testing concentrated on pairwise testing that

can detect any fault that occur between the interaction of

two parameter’s value [12]. Furthermore, existing d-way

strategies are of two categories, these categories are based

on the dominant approaches that are either algebraic

approach or computational approach [5] [12] [20].

There are strategies that adopt computational

approach, examples of these strategies are: IPOG [12], SA

[17], HSS [3] [19] and GA [15].

The existing strategies that support d-way interaction

can be categorized into two approaches. These are:

OTATA and OPATA.

A. OTATA

The main idea of OTATA is straight forward: it

generates the test case one by one continuously until the

coverage requirement is met. Therefore, during this

process, each new test case is covers as many uncovered

target combinations as possible, in such a way that the total

number of test cases in the test suit can be reduced

(minimized) [6]. To generate this individual test case, some

algorithms are used (developed) to select a best individual

test case at each time. Some of these algorithms are:

Greedy algorithms GA [2], AETG [6], Simulated

Annealing (SA) [8], ACA [11], and HSS [3] [19].

B. OPATA

The OPATA is quite different compare to OTATA.

The main idea of OPATA is straight forward: It begins with

selected parameters, then it iteratively adds one parameter

till all parameters are covered (i.e. horizontal growth) and

new test cases could be added (i.e. vertical growth) to

ensure maximum interaction coverage [16]. OPATA

ensure that the total number of test cases in the test suit are

reduced (minimized). To generate this individual test case,

some algorithms are used (developed). Some of these

algorithms are: IPO [16], [12], ReqOrder [13], ParaOrder

[13].

III. HARMONY SEARCH ALGORITHM

The Harmony Search Algorithm (HSA) was initially

proposed by Geem and apply to solve the optimization

problem of water distribution networks in 2000 [9]. As a

novel population-based meta-heuristic algorithm, during

the recent years, it has gained great research success in the

area of mechanical engineering, control, signal processing,

etc. When musicians compose the harmony, they usually

try various combination of the music pitches stored in their

memory, which can be considered as an optimization

process of adjusting the input (pitches) to obtain the

optimal output (perfect harmony). The music

improvisation is a process of searching for the better

harmony by trying various combinations of pitches that

should follow any of the following three rules [9]:

 By playing any pitch from the memory.

 By playing an adjacent pitch of one pitch from the

memory.

 By playing a random pitch from the possible range.

The three rules in the HS algorithm are effectively directed

using two essential parameters: Harmony Memory

Considering Rate (HMCR) and Pitch Adjustment Rate

(PAR) [9].

The first step will initialize the HS memory (HM). The

initial HM consists of a given number of randomly

generated solutions to the optimization problem under

consideration [2].

The second step will improvise a new solution from the

HM. Each component of this solution is obtained based on

the HMCR [2].

The third step will update the HM. The new solution from

second step is evaluated. If it yields a better fitness than

that of the worst member in the HM, it will replace that

one. Otherwise, it is eliminated [2].

The fourth step will repeat second step to third step until a

present termination criterion is met (i.e. the maximal

number of iterations is met) [2].

1st International Conference on Education and Development ITED 2018

110

Begin Define objective function f(x), x=(x1,x2, …,xn)K

Define harmony memory accepting rate (RHMCR)

Define pitch adjusting rate (RPAR) and other parameters

Generate Harmony Memory with random harmonies

While (t<max number of iterations)

 While (i≤number of variables)

 If (Rrandom≤ RHMCR), Choose a value from HM for the variable i

 If (Prandom≤PPAR), Adjust the value by moving to next or previous value

 Else Do not adjust the value chosen from HM

 Else Choose a random value

 End while

 Accept and add the New Harmony (solution) to HM if better than the worst harmony End

while

Fig. 1. The harmony search algorithm [2].

IV. OPATHS STRATEGY

The framework of OPATHS strategy can be describe

here that can always construct a minimum test suite. Under

the circumstances that different test case construction

algorithm that have been developed with an objective to

generate a near minimum test suite. OPATHS have been

designed based on HSA that have been proposed some

modifications to work on OPATA instead of OTATA used

in normal HSA in [2]. These modifications will enhance

and improve the generation of final test suite to be a near

optimum size.

The OPATHS is developed to support uniform interaction

strength test suite. This strategy is comprising of two main

algorithms as follows:

 Initial pairs algorithm,

 The test suite generation algorithm.

OPATHS will start by after the longest pair has been

generated, after then it will follow by these steps below:

Step 1: Initializing the HM

OPATHS will start by initializing the HM with a

random test pair by considering the longest pair generated

by initial algorithm. Test pairs from the initial pair

algorithm will be selected to put a random value from the

next parameter. Also, the best test case will be selected

based on number of covered and uncovered interactions

and then it put in the next pairs. The HM most have a

specific size, the size of the HM here OPATHS is five (5).

Step 2: Improvise a new solution from the HM

The OPATHS here will set a value of HMCR to

be random value between 0-1 in order to improvise. This

improvisation is based on the HMCR value. If the HMCR<

0.7 it will improvise locally, else it will improvise globally.

For the local improvisation PAR will be set to be a random

value between 0 – 1 in order to make an adjustment for the

selected test pair. It will adjust if PAR<0.9, otherwise no

adjusting. Adjusting here will change the value of the

current selected parameter to another value within the

current selected parameter.

Step 3: Updating the HM

From step 2 above, a new solution is evaluated (a

new pair). So, if that solution is yields a better fitness than

that of the worst member in the HM, it will replace that

one. Otherwise, it is eliminated.

Step 4: Iteration

This step will repeat step 2 and step 3 until a

maximal number of iterations is met and it generate the

near optimal final test suite. Here in OPATHS, number of

iteration is ten (10) times.

1st International Conference on Education and Development ITED 2018

111

Start

Declare LongestPair list= null, NextPair list= null, FinalTest list= null

Read file

Sort the Parameters in respect to their values

Select & generate parameter combination based on d

Generate LongestPair

Loop1//LOOP ALL PARAMETERS TO PICK EACH

 Loop2 //LOOP LONGESTPAIR TO PICK EACH PAIR

 If (NextPair list is not empty)

 Select a pair from LongestPair and Put into HM // five times

 Loop3

 Select each pair from the HM & Measure the weight

 Loop3 end

 if (weight== 0)

 Add selected pair from HM to nextpair list

 Else // improvise. Ten (10) times

 Loop4

 Initialize HMCR (ranges 0-1)

 Declare newPair

 If (HMCR<0.7) //Do local improvisation

 Initialize PAR (ranges 0-1)

 If (PAR<0.9) //adjust

 newPair = Change the value of last parameter of the selected test pair from

 HM within the same parameter

 else //no adjust

 newPair=selected pair from HM

 else // Do global improvisation

 newPair=select random test pair from HM

 Measure newPair weight

 If (newPair weight == 0)

 Add newpair to nextpair list

 Else if (newPair weight >= worst) //UPDATE HM

 Replace newPair with the worst pair in HM

 Loop4 End

 Add best pair in hm to nextpair list

 Else

 Add a random pair to nextpair list

 Loop2 End

 LongestPair list = nextPair list

Loop1 End

FinalTest list = LongestPair

Check Missing Pair

If (missing pair == true)

 Update FinalTest list

Else

 Ignore missing pair

// end of check missing pair

Return FinalTest list

End

Fig. 2. The OPATHS pseudo code

1st International Conference on Education and Development ITED 2018

112

V. ANALYSIS AND PERFORMANCE

Evaluation of the OPATHS focuses only on one main

criteria: it efficiency/performance to generate better test

suites sizes compared with existing strategies.

The OPATHS have adopted the following parameter

settings (see Table I), in order to take the best result from

the ten (10) runs improvisation:

TABLE I: OPATHS PARAMETER SETTINGS

S/N Parameter Value

1 HMS 5

2 HMCR 0.7

3 PAR 0.9

4 Improvisations/iterations 10

The Table I above describes the parameters settings used

in OPATHS. The Harmony memory size (HMS) is set to

five (5), that means it can only accommodate five test pairs

at a time. The HMCR is set 0.7 to give permission for either

to do local or global improvisation, when it’s higher than

0.7 it will do local improvisation otherwise global. The

PAR is set to 0.9 to give permission to adjust a value or

not, that is when it’s higher than 0.9 it will adjust a

parameter value otherwise no adjustment. The final

parameter setting is iterations, the iteration count the

number of improvisation which is set to 10.

Based on the above-mentioned criteria, the following sub-

sections present the complete evaluation:

Comparison of OPATHS with other strategies

To benchmark OPATHS against other strategies,

OPATHS is compared with other available strategies,

including HSS, SA, GA, ACA, AETG, IPOG, Jenny, TVG,

and PSTG. Here, the comparison aims to investigate the

OPATHS generated test suite size against other strategies

based on well-known benchmark configurations. Hence,

OPATHS results are directly compared with published

results for strategies in [2].

A number of system configurations is divided into

fourteen groups in order to compare the performance of

OPATHS against other strategies [2]. For the comparative

purposes, an experiment is adopted on each of the fourteen

configuration ten times, this is because there is a random

selection of values of parameter which may have different

test suite size on each experiment. In the experiment, only

a system configuration with covering array notation and

mixed covering array notation are adopted with a uniform

interaction strength. The configurations are shown as

follows:

S1= CA (N; 2, 34), S2= CA (N; 2, 313),

S3= CA (N; 2, 1010), S4= CA (N; 2, 1510),

S5= CA (N; 2, 510), S6= CA (N; 3, 36),

S7= CA (N; 3, 46), S8= CA (N; 3, 56),

S9= CA (N; 3, 66), S10= CA (N; 3, 57),

S11= MCA (N; 2, 513822),

S12= MCA (N; 2, 716151463823),

S13= MCA (N; 3, 524232),

S14= MCA (N; 3, 101624331)

TABLE II: COMPARISON IN TERMS OF TEST SUITE SIZE FOR DIFFERENT CONFIGURATION (WHEN 2 ≤ d ≥3)

Configuration HSS SA GA ACA AETG IPOG Jenny TVG PSTG OPATHS

S1 9 9 9 9 9 9 10 11 9 9

S2 18 16 17 17 17 20 20 19 17 16

S3 155 NA 157 159 NA 176 157 208 NA 228

S4 341 NA NA NA NA 373 336 473 NA 559

S5 43 NA NA NA NA 50 45 51 45 45

S6 39 33 33 33 38 53 51 49 42 32

S7 70 64 64 64 77 64 112 123 102 88

S8 199 152 125 125 194 216 215 234 NA 177

S9 336 300 331 330 330 382 373 407 338 325

S10 236 201 218 218 218 274 236 271 229 202

S11 20 15 15 16 20 19 23 22 NA 15

S12 48 42 42 42 44 43 50 51 48 42

S13 119 100 108 106 114 111 131 136 NA 102

S14 378 360 360 361 377 383 399 414 385 360

The highlighted (grey) cells in Table II above show the

smallest (best) generated size of the test suite from each

strategy, the highlighted (yellow) cells show the second

best generated size, and the (NA) cells refers to not

available, meaning that the strategies' results are not

reported in their respective publications.

Based on the results shown in Tables II it is clear that

OPATHS performance is affected by the increasing

number of V and P and also better when the configuration

system is a mixed covering array. The performance of the

mixed covering array has a better performance than the

covering array configuration. In fact, it can be seen that

1st International Conference on Education and Development ITED 2018

113

OPATHS outperforms all other strategies in most cases

considered, because most of the time it appears to be the

best or second best.

Due to the fact that OPATHS can support the

mathematical notation CA and MCA (uniform interaction

strength) and from the result obtained in the experiments

(Table: II) appears that OPATHS is always best at

configurations with MCA notations compare to the CA

notations which is not perfect.

Therefore, it can be concluded that OPATHS is useful

for supporting software testing.

VI. CONCLUSION

In this paper, we have described an innovative

approach of applying OPATA called OPATHS as a

strategy for d-way test generation. Comparatively, the

performances of OPATHS with some existing strategies

have been encouraging.

To the best of my knowledge, OPATHS is the first

Harmony Search based strategy supporting OPATA which

addresses the problem of d-way test suite generation. The

main features of OPATHS is that it’s well optimized and

has been exceptional in performance.

Finally, OPATHS is still in a prototype form, an

obvious starting point for future work would be to

complete the implementation. For example we would

personally suggest the following recommendations: To

support a VCA notation with variable interaction strength,

and to support IOR notation with IO based relation as well.

REFERENCES

[1] M. Kaur, and R. Singh, “A review of software testing techniques,”

International Journal of Electronic and Electrical Engineering, 7(5),
463-474, 2014.

[2] A. A. Alsewari, and K. Z. Zamli, “Interaction Test Data Generation

Using Harmony Search Algorithm,” Symposium on industrial
electronics and applications, Page 559-564, 2011.

[3] A. A. Alsewari, and K. Z. Zamli, “Design and implementation of a

harmony-search-based variable-strength t-way testing strategy with
constraints support,” Journals on Information and Software

Technology, 54, 553–568, 2012.

[4] A. A. Alsewari, and K. Z. Zamli, “A harmony search based pairwise
sampling strategy for combinatorial testing,” International Journal

of the Physical Sciences, 7(7), 1062 – 1072, 2012.

[5] A. A. Alsewari, K. Z. Zamli, and B. AL-Kazemi, “Generating t-way

test suite in the presence of constraints,” Journal of Engineering and
Technology, 6(2), 2180-3811, 2015.

[6] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton, “The

automatic efficient test generator (AETG) system,” Journals on
International Symposium on Software Reliability Engineering, 303-

309, 1994.

[7] P. Ranjan, and T. Kim, “Application of genetic algorithm in
software testing,” International Journal of Software Engineering and

Its Applications, 3(4), 2009.

[8] X. Deng, Z. Wen, Y. Wang, and P. Xiang, “An improved PSO
algorithm based on mutation operator and simulated annealing,”

International Journal of Multimedia and Ubiquitous Engineering,

10(10), 369-380, 2015.
[9] W. Geem, H. Kim, and V. Loganathan, “A new heuristic

optimization algorithm: harmony search simulation,” International

Journal of Computer science and software engineering, 76 (2), 60–
68, 2001.

[10] B. Hambling, “Software testing an ISTQB–ISEB foundation guide,”

2011.
[11] I. Hassan, and Z. Kamran, “Using Ants as a Genetic Crossover

Operator in GLS to Solve STSP,” International Conference of Soft

Computing and Pattern Recognition, Vol1, 2014.
[12] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG:

A general strategy for t-way software testing,” 14th Annual IEEE

International Conference and Workshops on the Engineering of
Computer-Based Systems, 549-556, 2007.

[13] Z. Wang, C. Nie, and B. Xu, “Generating Combinatorial Test Suite
for Interaction Relationship,” Journal of Software ACM, ISBN 978-

1-59593-724, 2007.

[14] R. Othman, and K. Z. Zamli, “T-way strategies and its applications
for combinatorial testing,” International Journal on New Computer

Architectures and Their Applications (IJNCAA), 1(2), 459-473,

2011.
[15] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using artificial life

techniques to generate test cases for combinatorial testing,” 28th

Annual International Computer Software and Applications

Conference IEEE, 1, 72-77, 2004.

[16] K. Tai, and Y. Lie, “Test generation strategy using pairwise,” IEEE

transaction on software engineering, 28(1), 109-111, 2002.
[17] J. Yan, and J. Zhang, “Combinatorial testing: principles and

methods,” Journal of Software, 20(6), 1393-1405, 2009.

[18] M. I. Younis, and K. Z. Zamli, “MC-MIPOG: A parallel t-way test
generation strategy for multicore systems,” ETRI Journal, 32(1), 73-

83, 2010.

[19] K. Z. Zamli, Y. A. Basem, and K. Graham, “A Tabu Search hyper-
heuristic strategy for t-way test suite generation,” Journal of Applied

Soft Computing, 44, 57-74, 2016.

[20] K. Z. Zamli, M. Klaib, M. Younis, N. Isa, and R. Abdullah, “Design
and implementation of a t-way test data generation strategy with

automated execution tool support information science,” Journal of

information science, 181(9), 1741-1758., 2011.

