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Abstract — This paper, presents a technique for 

determining the statistical significance of banded patterns 

in 2-Dimensional (2-D) zero-one data. Given a 2D data 

set, some form of banding can be identified by rearranging 

the columns and rows, but the question is whether these 

bandings are significant or not. The approach advocated 

in this paper is to use Gaussian distribution mechanism on 

randomly generated 2D datasets to which banding had not 

been applied which is then used to established whether the 

generated banding is significant or not in terms of the 

distance from the mean. In this paper, a column and row 

scoring mechanism incorporated into the 2D Banded 

Pattern Mining (BPM) algorithm is presented. Evaluations 

were conducted using two sets of experiments: experiments 

using a collection of data sets, using a static dot density of 

10% and experiments using collection of data sets using 

ranges of dot density values from 10% to 50% increasing 

in steps of 10%. The evaluation results presented indicate 

the significance of bandings with respect to either one 

standard deviation (1SD) or two standard deviation (2SD). 

The results also show that it is possible to generate generic 

normal distribution curves using range of dot density 

values. 
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I INTRODUCTION 

The work presented in this paper is concerned with 

technique for determining the statistical significance of 

banded patterns in 2-Dimensional (2-D) zero-one data, 

using the Gaussian distribution. The objective of the paper 

is that, given any 2D data set, some form of banding can be 

identified by rearranging the columns and rows, but the 

question is whether the obtained banding is significant or 

not. A trivial example of 2D banding is given in Figure 1. 

The figure shows a 2D banding example with columns and 

rows rearranged to reveal banding.  

 

 

 
(a) 

 

 

 
(b) 

 

  Fig 1: 2D banding example (a) original matrix and 

(b) original matrix with the columns and rows reordered 

to reveal a banding 

The rest of the chapter is organised as follows; Section 

2 presents related work. Section 3 presents the 

methodology of the paper. Section 4 presents evaluation 

and result. Finally, Section 5 concludes the paper. 

 

II RELATED WORK 

The identification of banding in 2-D zero-one data has a 

long history, although the ideas of 2D Banded Pattern 

Mining (2D-BPM) as adopted in this paper was first 

proposed in [1], [2], [3], [17] and [18]. Existing work on 

identifying bandings in zero-one data as proposed in [19] 

and [20]  

 

concentrated on the generation and testing of permutations, 

whilst [21] used barycentric values to identify bandings. 

The main issue with the identification of banded patterns 

in this manner is the large number of permutations to be 
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considered makes the identification of banding in 2D data 

a resource intensive enterprise. To address this issue 

according to [1], [2], [3], [17] and [18], an alternative 

solution to the permutation generation and test approach 

that does not require the generation of permutations but 

instead operates using the concept of a Banding Score 

(BS). The proposed solution is to iteratively reorder the 

items in each column and row according to their individual 

BS until a “best” banding is arrived at defined in terms of 

a Global Banding Score (GBS). 

 

 
III.  METHODOLOGY 

 

This paper presents mechanism for determining the 

statistical significant of bandings. The basic idea presented 

is that if we had “n” randomly generated data sets, all 

featuring the same dimensions and approximately the same 

density, each of these data sets would have a Global 

Banding Score (GBS) value associated with it. The 

assumption here is that these GBS values would be 

distributed following the normal (Gaussian) distribution. 

However, it is expected that the GBS value generated after 

banding had been applied would be located away from the 

median of the distribution by a distance of at least one 

standard deviation. Note that the normal (Gaussian) 

distribution mechanism was selected in this paper because 

it was assumed that the data sets to which banding will be 

applied are likely to follow this distribution. Further reason 

was that the Gaussian distribution is easy to work with and 

many statistical tests can be derived from it. This paper 

explores this idea and demonstrates that normal 

distributions can be usefully employed to establish the 

statistical significance of banding. 

 

                                     

A. Overview of statistical significance testing 

The normal distribution is concerned with the operation of 

a continuous probability distribution [4, 6, 7, 12 and 14] 

that represents a real-valued random variable. The normal 

distribution is described by the probability density function 

Φ(x) given in Equation 1, where x is an observation of 

some kind. Note that the factor 2 ensures the total area 

under curve Φ(x) is one [4, 5, 7 and 8] and that the 

distribution has a unit variance (unit standard deviation). 
1/2 2

( )
2

e x
x


 . Though, authors differ on which normal 

distribution should be called the “standard” one, Gauss 

[16] defined standard normal distribution as having 

variance 
2 1 2   and a probability density function of:  

2

( )
xe

x
x

   . While Stigler [12, 13] define standard 

normal distribution as having a variance 
2 1 2   and a 

probability density function of: Using the probability 

density function Φ(x) given above, for a range of values of 

x, a “bell curve” [11] describes a mean µ, a standard 

deviation σ and a variance σ2. Figure 2, taken from [10] 

presents many examples of bell curves associated with the 

normal (or Gaussian) distribution. In the figure the x-axis 

indicates a range of values for the variable x   

  

from -5 to 5 and the y-axis represents the frequency or 

probability of the occurrence count. The red curve in the 

figure is the standard normal curve with (µ = 0, σ = 1), the 

blue and green curves represents the normal curves with 

(µ= 0, σ = 0:2) and (µ = -2, σ = 0:5), whilst the purple curve 

is a normal curve with (µ = 0, σ = 5:0). Thus, the normal 

distribution is symmetric about its mean µ. The normal 

distribution value tends to zero when the value x lies more 

than a few standard deviations away from the mean. 

 

 
      Fig 2: Gaussian or Normal Probability Curve [10] 

 

In the normal distribution, the three-sigma rule is used to 

show the percentage of values that lie within a band around 

the mean width of “one”, “two” and “three” standard 

deviations; this means that; 68.27%, 95.45% and 99.73% 

of the values lie within one, two and three standard 

deviations from the mean. In other words, for the normal 

distribution, values of less than one standard deviation 

away from the mean accounts for 68.27% of the values, 

two standard deviation from the mean accounts for 95.45% 

of the values and three standard deviation accounts for 

99.73% of the values. Figure 3 taken from [9], illustrates 

the three-sigma rule for the normal distribution. With 

respect to the work presented in this paper, the normal 

(Gaussian) distribution was used to test the statistical 

significance of bandings. 

 

 



1st International Conference on Education and Development ITED 2018 

211 

 

 
 

Fig 3: three-sigma rule for the normal distribution [9] 
 

 

 

B.  The Column and Row Score Mechanism 

The fundamental idea presented in [1], [2], [3], [17] and 

[18] was that the “bandedness” of a 2D dataset can be 

expressed in terms of a Global Banding Score (GBS), a 

number between “0” and “1”. Depending on how the GBS 

is calculated, “1” indicates a perfect banding and “0” the 

other extreme the “most imperfect” banding. The GBS is 

calculated by summing and normalizing individual column 

(CS) and row scores (RS) associated with individual 

columns and rows in each 2D matrix (data set). Individual 

CS (RS) is expressed as a number between 0 and 1. The 

idea is that given a set of columns (rows) scores, these can 

be used to reorder the columns (rows) to reveal a banding. 

Once the rows and columns have been reordered the 

individual CS (RS) values will need to be recalculated, as 

it is likely that they will have changed because of the 

reordering and a new GBS generated. The expectation is 

that the new GBS will be better than the initial GBS 

calculated prior to the reordering. It was anticipated that 

the reordering would have to be undertaken over several 

iterations until the GBS value “stabilised”. However, the 

important point to note is that the time complexity of this 

approach is linear according to the number of 

columns/rows.  

 

C. Column and Row Score Calculation 

The fundamental idea underpinning the 2D-BPM 

algorithms considered in [1], [2],[3],[17] and [18] was the 

concept of a banding score (column and row score 

mechanism). In 2-D data space, DIM = {Dimx, Dimy}, this 

implies calculating the banding sores for Dimx with respect 

to Dimy. Given a set of dots (Dotsxj) associated with index 

j in Dimx and index j in Dimy, a CS and RS can be 

calculated using Equation 1, 2. 
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where Cy is the set of y-coordinates associated with Dotsxj 

(|Dotsxj| ≡|Cy|). Similarly, where Cx is the set of x-

coordinates associated with Dotsyj (|Dotsyj|≡ |Cx|). And k1 

is the maximum size for dimension Dimx and k2 the 

maximum size for dimension Dimy. Note also that k1 and 

k2 equate to the maximum indexes for Dimx and Dimy 

respectively. 
 

1

1 2 3
0.428

3 4 7
xCS


  


 

 

 

(0.428x4)+(0.667x3)+1.000x2)+(1.000x1) = 

4(4+1) 

 

Following on from this CSx2 = 0.667, CSx3 = 1.000 and 

CSx4 = 1.000. The same scores would be obtained for the y 

dimension in Fig 1 because the banding is symmetrical 

about the leading diagonal. The idea is then to reveal a 

banding by arranging the indexes, in ascending order from 

the origin, according to their associated column scores. The 

column and row score mechanism can also be used to 

calculate a Global Banding Score (GBS) for an entire 

banding configuration using Equation 2 where GBSx and 

GBSy are the GBS for dimension x and y. 
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The value for GBSx and GBSy are then calculated using 

Equation 3 and 4. 
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Thus, returning to the configuration given in Figure 1, 

using Equation 3, the value for GBSx will be calculated as 

follow: 

  

1.712 + 2.001 + 2.000 + 1.000  =  6.713   =  0.671 

                        10                              10 

Because the configuration is symmetrical about the 

leading diagonal GBSy will also equal 0:671. The GBS 

value for the entire configuration will then, using 

Equation 3, be: 

0.671 0.671
0.671

2
GBS


   

 

 

D. The 2D Banded Pattern Mining (2D-BPM) 

Algorithm 

This section presents the 2D-BPM algorithm proposed in 

[1],[2][3],[17] and [18] for identifying bandings in 2D data 

sets. The algorithm operates by iteratively rearranging the 

column and row indexes until the GBS is minimised. 

The pseudo code for the 2D-BPM algorithm is presented in 

Algorithm 1. The inputs (lines 1 to 2) are: (i) a binary data 

set D and (ii) k1 (Dimx = {0, 1, …, k1}), k2 (Dimy = {0, 1, 

…, k2}. The output is a rearranged data set D that 

minimises the GBS value. The algorithm iteratively loops 

over the data space. On each iteration, the column score for 

each index j in Dimx is calculated (Line 7). The index in 

Dimx is then rearranged in ascending order of the CSxi to 

produce D⸍ (Line 9). The GBS for the x-dimension is 

calculated using Equation 3 (line 10). The same process is 

then followed for Dimy so as to produce D⸍⸍ (lines 11-14). 

The GBSy value calculated for the y-dimension is 

calculated using Equation 5 (line 15). A new GBS value is 

then calculated using Equations 3 (line 16). Then, if the 

new GBS is worse than the current GBS (GBSsofar) we exit 

with the previously stored configuration and GBS (lines 

17-18). Otherwise D, Dimx, Dimy and the value for GBS 

are updated (lines 20) and the algorithm repeats. If no 

changes (line 23) are made the algorithm also exit. 

 

 

Algorithm 1: The 2D-BPM Algorithm 

 

1. Input: D = Zero-One data matrix measuring k1 x 

k2 

2. Dimx = {0, 1, …, k1}, Dimy = {0, 1, …, k2} 

3. Output: Rearranged data space D that minimise 

GBS 

4. GBSsofar = 1.0 

5. Loop 

6.        for all index in Dimx  do 

7.              CSindex  = column score for indexj in Dimx 

is calculated using Equation 1 

8.         end for 

9. D⸍ = The data set D rearranged according to 

column score for Dimx  

10.  GBSx = Global banding score for Dim⸍x is 

calculated using Equation 4 

11.         for all index in Dimy  do 

12.                RSindex  = row score for indexj in Dimy is 

calculated using Equation 2 

13.          end for 
14. D⸍⸍ = The data set D⸍ rearranged according to the 

row score for Dimy  

15.  GBSy = Global banding score for Dim⸍y using 

Equation 5 

16.  GBSnew =  Overall Global Banding Score 

calculated using Equation 3 

17.    if (GBSnew ≥ GBSsofar) then 

18.        break 

19.   else 
20.        D = D⸍⸍, Dimx = Dimx⸍, Dimy = Dimy⸍,  

GBSsofar = GBSnew 

21.   end if 

22.  end loop 

23. Exit with D and GBS 

 

 

V EVALUATION AND RESULTS 

In this paper a 2D-BPM algorithm has been considered. 

The reported evaluations indicated that in all cases a better 

GBS value was produced after banding than existed prior 

to banding. The question remained as to whether the 

detected bandings were indeed statistically significant or 

not. This section considers a process that can determine 

whether an obtained banding is statistically significant or 

not. The idea was to create a bank of normal distribution 

curves, from randomly generated data sets to which 

banding had not been applied, which could then be used to 

establish whether a generated banding was significant or 

not in terms of distance from the mean. To demonstrate this 

approach, two sets of experiments were conducted, each 

involving a collection of 1000 data sets grouped into 

batches of 100 according to row/column size. More 

specifically the row and column dimensions used were: 

 

i. 100 x 100,  

ii. 141 x 141 

iii. 173 x 173, 

iv. 200 x 200, 

v. 224 x 224, 

vi. 245 x 245,  

vii. 265 x 265,  

viii. 285 x 285,  
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ix. 300 x 300 and  

x. 316 x 316.  

The effect was to have data sets ranging from 10,000 to 

100,000 locations in steps of 1,000. The 

distinction between the two sets of experiments was the 

density used: 

 

1) Static Dot Density value: Experiments using a 

collection of data sets, using a static density of 10%. 

2) Range of Dot Density values: Experiments using 

density values ranged from 10% to 50%  

3) increasing in steps of 10% (each data set size featured 

five different dot densities distributed evenly). 

 

The rational for the second set of experiments was to 

determine the more general applicability of the approach. 

The data sets were generated using the LUCS-KDD 

generator [15]. The results were then used to define ten 

normal distributions, one for each data set configuration. 

The normal distributions associated with the first set of 

experiments are discussed in further detail in Subsection 

6.1 while that associated with the second set is discussed in 

Subsection 6.2. The banded pattern significance testing is 

discussed in further detail in Subsection 6.3. 

 

 

A. Static Dot Density  

In this subsection, the experimental result using a static dot 

density of 10% is presented. Table 1 lists the natural GBS 

occurrence counts for each data set configuration (without 

banding), whilst Table 2 lists the accompanying µ, σ and 

one and two standard deviation limits. Fig 4 shows the 

normal distribution curves associated with the distributions 

(and the information in Tables 1 and 2). Inspection of the 

figure (and tables) indicates that similar distribution curves 

result regardless of data set size. The significance of these 

distribution curves is that they can now be used to compare 

GBS values obtained from similar data sets (same size and 

density) after banding has taken place. This is illustrated in 

the following section. 

 

 

Table 1: Mean and Standard Deviation values extracted from  

data presented in Table 1 (static dot density) 

 

 

 Data sets 

    GBS 100 

x 

100 

141 

x 

141 

173 

x 

173 

200 

x 

200 

224 

x 

224 

245 

x 

245 

265 

x 

265 

283 

x 

283 

300 

x 

300 

316 

x 

316 

 0.56 1 - - - - - - - - - 

0.57 18 6 1 1 - - - - - - 

0.58 60 15 5 10 - - - - - - 

0.59 19 57 26 78 1 1 - 1 - - 

0.60 2 17 46 10 20 15 2 14 5 3 

0.61 - 5 21 1 58 65 18 35 20 18 

0.62 - - 1 - 20 18 61 34 53 59 

0.63 - - - - 1 1 17 15 18 18 

0.64 - - - - - - 2 1 4 2 

Total 100 100 100 100 100 100 100 100 100 100 
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Table 2 Mean and Standard Deviation values extracted 

from (ranged of dot density) 

 

 

 

 

 
(a) 100 x 100 

 
(b) 141 x 141 

 

 
(c) 200 x 200 

 

 

 
(d) 173 x 173 

 

 
(e) 224 x 224 

 

 
(f) 245 x 245 

 

 
 

(g) 265 x 265 

 

 
(h) 283 x 283 

  

                                           Data sets 

100 
x 

100 

141 
x 

141 

173 
x 

173 

200 
x 

200 

224 
x 

224 

245 
  x 

245 

265 
x 

265 

283 
x 

283 

300 
x 

300 

316 
x 

316 

 µ 0.58 0.59 0.60 0.61 0.61 0.61 0.62 0.615 0.62 0.62 

     σ 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 

1SD µ-σ 0.57 0.58 0.58 0.60 0.59 0.60 0.61 0.595 0.61 0.61 

µ+σ 0.59 0.60 0.62 0.62 0.63 0.62 0.63 0.635 0.63 0.63 

2SD µ-2σ 0.56 0.57 - 0.59 - 0.59 0.60 - 0.60 0.60 

µ+2σ 0.60 0.61 - 0.63 - 0.63 0.64 - 0.64 0.64 
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(i) 300 x 300 

 

 
 

(j) 316 x 316 

 
Fig 4 Standard distribution curves for data presented in Table 1 (static dot 
density) 

 

B.  Range of Dot Density  

This subsection considers the normal distributions that 

result with respect to data set generated using a range of 

dot density values instead of a static dot density value. 

More specifically density values ranging from 10% to 50% 

increasing in steps of 10%. In the same manner, as in the 

previous subsection. Table 3 lists the natural GBS 

occurrence counts for each data set configuration (without 

banding), whilst Table 4 lists the accompanying µ, and one 

and two standard deviation limits. The associated normal 

distribution curves   are given in Fig 5.  Inspection of the 

figure indicates that similar distributions are produced; 

however, comparison with the distribution curves 

presented previously in Figure 4 indicates a marked 

difference in shape indicating that it is not a “one size fits 

all” situation. The significance of the distribution curves, 

as already noted was that they can be used to compare the 

GBS values obtained from data sets (same size but 

different densities) after banding has taken place to 

determine if the resulting banding is statistically significant 

or not. 
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Table 3 (ranged of dot density) 

 

 

 

Table 4 Mean and Standard Deviation values extracted from (range of dot density)      

 

 Data sets 

GBS 

 

 

100 

x 

100 

141 

x 

141 

173 

x 

173 

200 

x 

200 

224 

x 

224 

245 

x 

245 

265 

x 

265 

283 

x 

283 

300 

x 

300 

316 

x 

316 

0.51 1 1 - - - - - - - - 

0.52 - 1 1 1 1 2 - 1 - - 

0.53 - - - - - 3 1 - 1 1 

0.54 2 - 5 3 3 - 1 3 - - 

0.55 - - - - - 5 - - 3 5 

0.56 - - 6 - 5 - 2 - - - 

0.57 5 - - - - 7 - - 7 7 

0.58 - 3 8 4 7 - - 5 - - 

0.59 - - - - - - - - 9 - 

0.60 7 - 14 5 10 9 4 7 - 10 

0.61 - - - - - - - - - - 

0.62 - 4 - 9 12 12 10 - - - 

0.63 9 - - - - - - 10 14 12 

 0.64 - 5 - - 25 27 15 - - - 

0.65 - 9 27 - - - - - - - 

0.66 50 - - 15 11 - - - - 32 

0.67 - 13 - - - - - 12 31 - 

0.68 - - - 23 10 10 35 - - - 

0.69 10 26 - - - - - 26 - - 

0.70 - 14 15 15 - - - - - - 

0.71 8 - - - - - - - - - 

0.72 - 9 9 10 7 9 14 11 15 11 

0.73 - - - - - - - - - - 

0.74 5 5 8 6 5 7 9 10 9 9 

0.75 - - - - - - - - - - 

0.76 - - - 5 - - 5 - - - 

0.77 2 4 - - - - - - - - 

0.78 - - 6 3 3 5 2 7 7 7 

0.79 1 3 - 1 - - - 5 - - 

0.80 - 2 1 - 1 3 1 2 3 5 

0.81 - 1 - - - 1 1 1 1 1 

Total 100 100 100 100 100 100 100 100 100 100 

  Data sets 

100 

x 

100 

141 

x 

141 

173 

x 

173 

200 

x 

200 

224 

x 

224 

245 

x 

245 

265 

x 

265 

283 

x 

283 

300 

x 

300 

316 

x 

316 

 µ 0.66 0.68 0.65 0.68 0.64 0.64 0.68 0.68 0.67 0.66 

 σ 0.06 0.07 0.06 0.09 0.07 0.09 0.07 0.09 0.07 0.09 

1SD µ- σ 0.60 0.61 0.57 0.59 0.57 0.55 0.61 0.59 0.60 0.57 

µ+ σ 0.72 0.75 0.71 0.77 0.71 0.73 0.75 0.77 0.74 0.75 

2SD µ-2σ 0.54 - 0.53 - 0.50 - 0.54 - 0.53 - 

µ+2σ 0.78 - 0.77 - 0.78 - 0.82 - 0.81 - 
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(a) 100 x 100 

 

 
(b) 141 x 141 

 

 
(c) 173 x 173 

 

 
(d) 200 x 200 

 

 
(e) 224 x 224 

 

 

 
(f) 283 x 283 

 

 

 
(g) 300 x 300 

 

 
(h) 245 x 245 

 

 
(i)265 x 265 

 

 

 
(j) 316 x 316 

 

Fig 5 Standard distribution curves for data presented  

in Table 3 (ranged of dot density) 

 

 

C. Banded Pattern Significance Testing 

 

To evaluate the proposed approach to significance testing 

of generated banded patterns two set of experiments were 
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conducted using: (i) a static dot density value of 10% and 

(ii) a range of dot density values (the same range as used to 

generate the distribution curves described above). In each 

case, several additional synthetics data sets were generated, 

10 for each of the data set configuration used above to 

generate distribution curves. The resulting GBS values 

produced because of applying banding were then compared 

with the normal distributions. Note that for this purpose the 

2D-BPM banding algorithm was used. The results are 

presented in Tables 5 and 6. In the tables, for each data set 

configuration, the columns indicate: (i) the average GBS 

value obtained after banding, (ii) the  

distance of the average GBS value from the corresponding 

(µ) value shown in Tables 2 and 4 as appropriate, (iii) 

whether the results were significant or not (yes/no) with 

respect to one standard deviation (1SD) and (iv) whether 

the results were significant or not (yes/no) with respect to 

two standard deviation (2SD). From the tables, the 

generated average GBS values after banding had been 

applied in every case was found to be located at least one 

or two standard deviations away from the median. It is 

therefore argued that these bandings are statistically 

significant. The results also show that the proposed 

mechanism; the normal (Gaussian) distribution for 

determining the statistical significant of bandings is a 

viable approach and can be effectively used to determine 

the statistical significance of banding. 

 

Table 5: GBS results with Normal Distribution (static dot 

density) 

 

 

 

                                                                                                                                         

Table 6: GBS results with Normal Distribution (range of 

dot density) 

 

 

 

 

V CONCLUSIONS AND FUTURE WORK 

 

This paper has presented some ideas on how to determine 

whether the generated bandings are statistically significant 

or not. Two set of experiments were conducted using: (i) a 

static dot density value and (ii) a range of dot density 

values. The idea was that any data set irrespective of the 

density used and size, will feature some form of banding 

defined by a GBS value and these values will form a 

normal distribution. Whether, after column and rows have 

been reordered using the banding score concept, the 

resulting banding is significant or not can then be 

determined by how far the new GBS value is away from 

the mean of the associated normal distribution (µ). To 

analyse this approach twenty normal distributions were 

derived using ten 2D data set configurations. The usage of 

these distributions was then evaluated by using them to 

determine the significance of several further bandings. The 

evaluation results presented indicated the significance of 

bandings with respect to either 1SD or 2SD. A criticism of 

the approach is that the normal distribution for a data set 

under consideration must to be derived in each case; 

however, the results show that it is possible to generate 

generic normal distribution curves using ranges of dot 

density values (but a fixed size). The experiments had 

clearly indicated a useful mechanism for determining 

whether a banding is statistically significant or not. For 

Future work, the authors intend to investigate other ways 

of assessing the statistical significance of banded patterns. 

 

 

 

  

Data 

sets 

Mean 

GBS 

Distance 

from µ 

Significant w.r.t 

1SD (yes/no) 

Significant w.r.t 

2SD (yes/no) 

100 x 100 0.57 0.10 no yes 

141 x 141 0.57 0.09 no yes 

173 x 173 0.58 0.09 no yes 

200 x 200 0.59 0.09 yes no 

224 x 224 0.59 0.09 no yes 

245 x 245 0.59 0.09 yes no 

265 x 265 0.59 0.09 no yes 

283 x 283 0.59 0.09 yes no 

300 x 300 0.60 0.09 no yes 

316 x 316 0.60 0.09 yes no 

Data 

sets 

Mean 

GBS 

Distance 

from µ 

Significant w.r.t 

1SD (yes/no) 

Significant w.r.t 

2SD (yes/no) 

100 x 100 0.41 0.02 no yes 

141 x 141 0.42 0.01 yes no 

173 x 173 0.43 0.01 yes no 

200 x 200 0.44 0.01 yes no 

224 x 224 0.46 0.02 no yes 

245 x 245 0.45 0.02 no yes 

265 x 265 0.45 0.03 no yes 

283 x 283 0.46 0.02 yes no 

300 x 300 0.46 0.03 no yes 

316 x 316 0.46 0.03 no yes 
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