
1st International Conference on Education and Development ITED 2018

33

Design of A Harmony Search Algorithm Based on

Covering Array T-Way Testing Strategy

Abubakar Aminu Muazu1

Department of Mathematics & Computer Science.

Umaru Musa Yar’adua University

Katsina, Nigeria.

abubakar.muazu@umyu.edu.ng

Aminu Aminu Muazu2

Department of Mathematics & Computer Science.

Umaru Musa Yar’adua University

Katsina, Nigeria.

aminu.aminu@umyu.edu.ng

Abstract─ Software testing aims to minimize the

recognized risk of software which is worthless to an

admissible value. It is given a higher priority and lack of

testing may lead to harmful ends which includes the loss of

an important data, or even the lives of people. With

increase in the advancement of hardware technology and

demands for new functionalities and innovations, software

applications grew tremendously in term of size over the last

decade. This sudden increase in size has a profound impact

as far as testing is concerned. The Covering Arrays (CA)

are mathematical objects used in the functional testing of

software components. They enable the testing of all

interactions of a given size of input parameters in a

procedure, function, or logical unit in general, using the

minimum number of test cases. Building CA is a complex

task that involves lengthy execution times and high

computational loads. This paper proposes a design of an

algorithm of a t-way testing strategy (t refers to the

interaction strength), which is named Harmony Search

based Covering Array t-way testing strategy (HCATS).

HCATS is based on a meta-heuristic search algorithm as

its high level. It is able to support a configuration with

covering array notations only. Unlike other existing meta-

heuristics, HCATS is adopting One Parameter at a time

approach on the strength of Global Neighborhood

Algorithm and Particle Swarm Optimization. Our results

are promising as HCATS manages to outperform existing

t-way strategies on many of the benchmarks.

Keywords─ Combinatorial Testing, t-way techniques,

Optimization, one parameter at a time approach, Covering

Array notation.

I. INTRODUCTION

Many application systems are comprised of many

subsystems and each subsystem can provide some

functionalities to the overall system by considering it

number of parameter and their respective values. Testing

the overall system is not attainable practically, since it

might be a complex system having a different

implementation for each subsystem. In this way, the quality

assurances activities are very nervous particularly to the

increasing of testing costs and time-to-market pressure.

Therefore, testing each subsystem is required such as to

minimize the testing time and cost [1].

Some or many of the subsystems are configuration with

covering array (CA) notation representations.

Unfortunately, testing the configurations with CA notation

or other notations are not feasible, this is due to the

combination of all parameters values (test data); thus, a

sampling strategy to test all parameter-values interactions

is required.

T-way combinatorial testing strategies are classified as

either algebraic strategies or computational strategies [2]

[3] [4].

Algebraic strategies are constructing test suite using the

mathematical procedures [4]. Even though, the

manipulations in algebraic approaches are typically

lightweight which are not in to use by combinatorial

explosion problem. This is the reason why all strategies

that constructs test suite based on algebraic approach are

very fast [4] [5]. On the other hand, algebraic approaches

often impose restrictions on the system configurations to

which they can be applied [2]. This significantly limits the

applicability of algebraic approaches for software testing

[2].

But the computational approaches rely on generation of all

tuples (possible combinations) and then search the tuple

space to generate the required test suite continuously until

all tuples have been covered [4] [2]. Any time the number

of tuples to be considered are very large, then adopting any

computational approaches will make it expensive,

especially in terms of the space required to store the tuples

and the time required for explicit enumeration [2].

Furthermore, computational approaches can be applied to

arbitrary system configurations.

In most recent research, it has shown that an optimization

problems focuses on the adoption of meta-heuristic

algorithms as the basis for combinatorial t-way testing

strategies. The Search Based Software Engineering, is a

field that proposed meta-heuristic based combinatorial t-

way testing strategies [6]. Example of such strategies

include: Genetic Algorithms (GA) [6], Particle Swarm

mailto:abubakar.muazu@umyu.edu.ng
mailto:aminu.aminu@umyu.edu.ng

1st International Conference on Education and Development ITED 2018

34

Optimization (PSO) [6] [7], Harmony Search Algorithm

(HS) [7], Ant Colony Algorithm (ACO) [7], Simulated

Annealing (SA) [7] and Cuckoo Search (CS) [7]. In view

of the above example, it appears that the adoption of these

meta-heuristic based strategies provided to be effective for

obtaining good result as it’s reported in their benchmarking

experiments [1].

II. PROBLEM DEFINITION MODEL

A simple configuration with CA notation is used here

as a model to illustrate the uniform interaction testing. As

illustrated in Figure 1, the subsystem of Techno mobile

phone which has twelve (12) parameters with two (2)

values (on/off). This will require 212=4,096 test cases.

Therefore, if one (1) minute is required to run a single test

case. Then the time required to complete the exhaustive

testing is 4,096 minutes, which would be around three (3)

days.

Fig. 1. Techno-K9 Notification-Panel-Shortcuts

This is just a subsystem of a mobile phone that has just (12)

parameters, so what about a complete or a large application

system which has hundreds or even thousands of

parameters? Or maybe the number of values in each

parameter are more than two, like an application that has

ten (10) parameters; in which 5 parameters have 6 values,

3 parameters have 5 values, and the other parameters have

3 values, so the test cases which has to be tested for these

10 parameters is 65*55*32 = 8,748,000 test cases, if every

test case needs one (1) minute to do, so the time to complete

the exhaustive testing is almost 17 years

.

1st International Conference on Education and Development ITED 2018

35

TABLE 1: PARAMETER VALUES OF TECHNO K9 NOTIFICATION-PANEL-SHORTCUTS.

 PARAMETER
V

A
L

U
E

A
ir

p
la

n
e

m
o
d

e

W
i-

F
i

F
la

sh
li

g
h

t

D
at

a
C

o
n
n

ec
ti

o
n

B
lu

et
o
o

th

 L
o

ca
ti

o
n

 H
o

ts
p

o
t

S
cr

ee
n

sh
o

t

D
o

 n
o
t

D
is

tu
rb

U
lt

ra
-p

o
w

er

P
o

rt
ra

it

D
at

a
S

av
er

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
F

F

O
F

F

O
F

F

O
F

F

O
F

F

O
F

F

O
F

F

O
F

F

O
F

F

O
F

F

O
F

F

O
F

F

Therefore, the exhaustive testing is unattainable and then

the optimization of the test cases is crucial criterion to do

the testing of the system and these selected test cases

should be covered in all combination at least once.

III. COVERING ARRAY NOTATIONS

A covering array (CA) notations can be presented

using four parameters; β, t, λ, and ℓ (i.e. CA (β, t, λℓ).

Where β represent the size of test cases, t the interaction

strength of the array, λ the number of values of parameter

and ℓ the number of the parameters [1] [8] [9] [10] [11].

Example, like a system that has thirteen parameters of

which each parameter has two values and that can cover

three-way interaction for the system. The CA notation for

the above example is donated as: CA (8, 3, 213). Here, this

three-way interaction will come up with a total number of

8 test cases.

Similar to CA, mixed covering array (MCA) is when the

number of parameters’ values varies. Therefore, this can be

handled by Mixed Covering Array as: MCA (β, t, λ1
ℓ1, λ2

ℓ2,

λ3
ℓ3 … λj

ℓj). Where β represent the size of test cases, t the

interaction strength of the array, λ1 the number of values

for the first parameter, λ2 the number of values for the

second parameter, λ3 the number of values for the third

parameter, λj the number of values for the last parameter,

and ℓ1, ℓ2, ℓ3, ℓj represent number of the parameters

respectively [8] [10].

The variable-strength covering array (VCA) is somehow

complex compare to CA and MCA. VCA is CA or MCA

that contains another CA or MCA inside (i.e. VCA is a

super set of either CA or MCA). Here, VCA can be

presented using the following parameters β, t, λ, ℓ, μ, and

can be denoted as VCA (β, t, λ1
ℓ1, λ2

ℓ2, λ3
ℓ3 … λj

ℓj {μ1….

μk}) [8].

The Input-Output relation IOR adopt VCA notation. The

mathematical notation denoted as: IOR (N, {μ1... μk}),

λ1ℓ1, λ2ℓ2, λ3ℓ3 … λjℓj). Where μ consists of more than

one set of parameters relationship definition that will

contribute toward the outputs. These set of parameter μ can

be indexing starting from 0, 1, 2… n-1, reported in the

lecture book [12].

IV. RELATED WORK

The existing strategies that support combinatorial t-

way interaction can be categorized into two approaches.

These are: one test at a time (OTAT) approach and one

parameter at a time (OPAT) approach [8] [14].

The OTAT approach begins with an empty initial test suite,

then a complete test cases will be constructed and added

into a final test suite one after another, until all test cases

are covered by a final test suite [1] [13]. Some examples of

combinatorial t-wat testing strategy adopting OATA

approach are AETG [13], HSS [1] [6].

The OPAT approach begins with an initial test suite which

consists of several selected parameters, then it iteratively

adds one parameter at time until all parameters are covered

(i.e. horizontal extension). Upon the completion, some

missing test cases may be added (vertical extension) to

ensure maximum interaction coverage [2] [15]. Some

examples of combinatorial t-wat testing strategy adopting

OPAT approach are: IPO [15] [16], IPOG [2] [16], MIPOG

[2] [18], MC_MIPOG [2], ReqOrder [17], ParaOrder [17].

Finally, in the paper work of Alsewari et al [1]

demonstrates that HSS performs better than other t-ways

testing tool that based on OTAT approach, in both terms of

test generations time and the sizes of the generated test

suites. Therefore, for these reasons we have adopted the

OPAT approach as our basis design of this propose strategy

which will only support the configuration with CA

notations.

V. OVERVIEW OF HCATS

The framework of HCATS strategy can be describe

here that can always construct a minimum test suite. Under

the circumstances that different test case construction

algorithm that have been developed with an objective to

1st International Conference on Education and Development ITED 2018

36

generate a near minimum test suite. HCATS is to be design

based on Harmony Search algorithm which have been

proposed some modifications to work on OPAT approach

instead of OTAT approach used in HSS [1]. These

modifications will enhance and improve the generation of

final test suite to be a near optimum size.

The basics behind choosing the harmony search algorithm

in HCATS it has the power to control the search between

the local solutions and global solutions based on its

parameters, and it also shows an efficient performance

when generating the test suite based on OTAT approach

implemented in the HSS [1].

The HCATS will be develop to support uniform interaction

strength test suite. This strategy is comprising of three main

algorithms as follows:

 Initial pairs algorithm,

 The test suite generation algorithm

 The mapping algorithm

Fig. 2. HCATS Algorithms

The initial pairs algorithm does three things, it will start

by reading the configuration data to be tested from a file,

generate a pair based on the given interaction strength and

then select the pairs with the highest value (longest pair).

The test suite generation algorithm is the main algorithm

to optimize and also generate a near optimal final test suite.

Here in this algorithm the concept and procedures in HSS

is applied that would work on OPAT approach, while the

HSS used the concept from HS algorithm but on OTAT

approach [1]. These steps are as follow:

 Step 1 Initializing the Harmony Search Memory

(HM): HCATS will start by initializing the HM

with a random test pair by considering the longest

pair generated by initial algorithm. All test pairs

from the initial pair algorithm will be selected to

put a random value from the next parameter until

all test pair finish. For every initialization of HM,

a best test pair will be selected based on number

of covered and uncovered interactions and then

put it in the next pairs. The HM most have a

specific size called HMS, it can be of any value.

Initial Pair
Algorithm

Test Siute
Greneration
Algorithm

Mapping
Algorithm

1st International Conference on Education and Development ITED 2018

37

Fig. 3. Overview of HCATS

 Step 2 Improvise a new solution from the HM:

The HCATS here will set a value of harmony

memory considering rate (HMCR) to be a random

value between 0-1 in order to improvise. This

improvisation is based on the HMCR value,

HMCR is set to 0.7 so that we can have 70% local

improvisation while to have 30% for the global

improvisation. If the HMCR< 0.7 it will

improvise locally, else it will improvise globally.

For the local improvisation, a pitch adjustment

rate (PAR) will be set to be a random value

between 0–1 in order to make an adjustment for

the selected test pair and it is set 0.9 so as to have

90% of adjusting the value of next parameter

while the remaining 10% will adjust any value. It

will adjust if PAR<0.9, otherwise no adjusting.

Adjusting here will change the value of the next

selected parameter to another value within that

(Based on t-way interaction)

Generate test case
Based on HS

Harmony Memory

Best test case list

Create longest pair

Input analysis data

CA (N, 2, 212) or MCA (N, 2, 32 43)

1st International Conference on Education and Development ITED 2018

38

parameter. For the global improvisation, it will

randomly select one test pair initialized in the HM

and put it in the next pair.

 Step 3 Updating the HM: From step 2 above, a

new solution is evaluated (a new pair). So, if that

solution is better than the worst in the HM, it will

replace that one. Else, it will ignore. Better

solution means to have less number of uncovered

interaction while worst solution is have high

number of uncovered interaction.

 Step 4 Iteration: This step will repeat step 2 and

step 3 until a maximal number of iterations is met

and it generate the near optimal final test suite.

The mapping algorithm will only map the original values

of each parameter with their respective integer value used

when constructing the initial pairs/generating final test suit.

Here in this algorithm, it will replace back the integer value

used in constructing final test suit to their original values

respectively.

VI. CONCLUSION

In the present paper, we have proposed and discussed a

harmony-search-based covering array t-way strategy that

support one parameter at a time approach, called HCATS.

HCATS was designed based on Harmony Search algorithm

which have been proposed some modifications to work on

one parameter at a time approach instead of one test at a

time approach used in published paper HSS. HCATS also

has the potential to address constrains covering arrays for

any interaction strength. We are currently investigating a

first prototype implementation of HCATS that can be

utilized within the FRAMEWORK environment.

REFERENCE

[1] A. A. Alsewari, and K. Z. Zamli, “Design and implementation of a
harmony-search-based variable-strength t-way testing strategy with

constraints support,” Journals on Information and Software

Technology, 54, 553–568, 2012.

[2] M. I. Younis, and K. Z. Zamli, “MC-MIPOG: A parallel t-way test

generation strategy for multicore systems,” ETRI Journal, 32(1), 73-
83, 2010.

[3] M.B. Cohen et al., “Constructing Test Suites for Interaction
Testing,” Proc. 25th IEEE Int. Conf. Software Engineering, May 3-

10, pp. 38-48. 2003

[4] M. Grindal, J. Offutt, and S.F. Andler, “Combination Testing
Strategies: A Survey,” J. Software Testing, Verification, and

Reliability, vol. 5, no. 3, pp. 167-199. 2004.

[5] M. B. Cohen, M. B. Dwyer, J. Shi, “Interaction Testing of Highly-
Configurable Systems in the Presence of Constraints”. ACM 978-1-

59593-734. 2007.

[6] K. Z. Zamli, Y. A. Basem, and K. Graham, “A Tabu Search hyper-

heuristic strategy for t-way test suite generation,” Journal of Applied
Soft Computing, 44, 57-74, 2016

[7] A. B. Nasser, A. A. Alsewari, A. A. Mu’azu, K. Z. Zamli.
“Comparative Performance Analysis of Flower Pollination

Algorithm and Harmony Search based strategies: A Case Study of

Applying Interaction Testing in the Real World”. 2nd International
Conference on New Directions in Multidisciplinary Research &

Practice. ISBN: 978-969-9948-47-3. 2016.

[8] Ahmed, S. and Zamli, K. Z. (2011). A review of covering arrays and
their application to software testing. Journal of Computer Science.

7(9), 1375-1385.

[9] Jose T. and Eduardo R. (2012). New bounds for binary covering
arrays using simulated annealing. Journal of Information Sciences.

185, page 137–152

[10] Alsewari, A. A., Zamli, K. Z. and AL-Kazemi, B. (2015).

Generating t-way test suite in the presence of constraints. Journal of
Engineering and Technology. 6(2), 2180-3811.

[11] Mahmouda T. and Bestoun S. A. (2015). An efficient strategy for

covering array construction with fuzzy logic-based adaptive swarm
optimization for software testing use. Journal of Expert Systems

with Applications. 42, page 8753–8765

[12] Zamli, K. Z. and Alkazemi, Y. (2015). Combinatorial T-Way

Testing. Universiti Malaysia Pahang. Malaysia.

[13] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton, “The
automatic efficient test generator (AETG) system,” Journals on

International Symposium on Software Reliability Engineering, 303-

309, 1994.

[14] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG:
A general strategy for t-way software testing,” 14th Annual IEEE

International Conference and Workshops on the Engineering of

Computer-Based Systems, 549-556, 2007

[15] K. Tai, and Y. Lie, “Test generation strategy using pairwise,” IEEE

transaction on software engineering, 28(1), 109-111, 2002.

[16] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG:
A general strategy for t-way software testing,” 14th Annual IEEE

International Conference and Workshops on the Engineering of
Computer-Based Systems, 549-556, 2007.

[17] Z. Wang, C. Nie, and B. Xu, “Generating Combinatorial Test Suite
for Interaction Relationship,” Journal of Software ACM, ISBN 978-

1-59593-724, 2007.

[18] M. I. Younis, K. Z. Zamli, N. Ashidi. “MIPOG - Modification of the
IPOG Strategy for T-Way Software Testing” international

conference. 2008.

